• Request Info
  • Visit
  • Apply
  • Give
  • Request Info
  • Visit
  • Apply
  • Give

Search

  • A-Z Index
  • Map

Chemistry

  • About
    • Student Organizations
    • Connect With Us
    • Careers With Us
    • Employee/Student Travel Request
  • Undergraduate Students
    • Majors and Minors
    • First Year Students
    • Undergraduate Research
    • Summer Programs
    • Chemistry Lab Excused Absence
    • Apply
  • Graduate Students
    • Prospective Students
    • Admitted Students
    • Current Students
    • Chemistry Graduate Student Handbook
  • Faculty
  • People
  • Research
    • Research Areas
    • Facilities
    • SMLQC 2025
  • News
  • New Chemistry Building
Home » Dai Group Published in ACS Energy Letters

Dai Group Published in ACS Energy Letters

Dai Group Published in ACS Energy Letters

December 11, 2020 by Kayla Benson

The Dai group published their research “Surpassing the Organic Cathode Performance for Lithium-Ion Batteries with Robust Fluorinated Covalent Quinazoline Networks” in  ACS Energy Letters.

Organic electrode materials have promising application prospects in energy storage, but issues including rapid capacity fading and poor power capacity restrict their practical applications. Herein, nanoporous fluorinated covalent quinazoline networks (F-CQNs) were constructed by condensation of fluorinated aromatic aminonitrile precursors via an ionothermal pathway.

Precise control of the reaction parameters afforded F-CQN-1-600 material featuring high surface area, permanent porosity, high nitrogen content (23.49 wt %), extended π-conjugated architecture, layered structure, and bipolar combination of benzene and tricycloquinazoline. Synergy among these unique properties leads to a good performance as a cathode source for lithium-ion batteries (LIBs) in terms of high capacity (250 mA h g–1 at 0.1 A g–1), high rate capability (105 mA h g–1 at 5.0 A g–1), and impressive cycling stability (95.8% retention rate after 2000 cycles at 2.0 A g–1 together with a high Coulombic efficiency of 99.95%), surpassing most of the previous organic cathode counterparts

Filed Under: Artsci, Dai, News

Chemistry

College of Arts & Sciences

552 Buehler Hall
1420 Circle Dr.
Knoxville, TN 37996-1600

Email: chemistry@utk.edu

Phone: 865-974-3141

 

The University of Tennessee, Knoxville
Knoxville, Tennessee 37996
865-974-1000

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.

ADA Privacy Safety Title IX