• Request Info
  • Visit
  • Apply
  • Give
  • Request Info
  • Visit
  • Apply
  • Give

Search

  • A-Z Index
  • Map

Chemistry

  • About
    • Student Organizations
    • Connect With Us
    • Careers With Us
    • Employee/Student Travel Request
    • Share Your Dr. Schweitzer Story
  • Undergraduate Students
    • Majors and Minors
    • First Year Students
    • Undergraduate Research
    • Summer Programs
    • Chemistry Lab Excused Absence
    • Apply
  • Graduate Students
    • Our Programs
    • Graduate Student Resources
    • Research Open House
    • Apply
  • Faculty
  • People
  • Research
    • Research Areas
    • Facilities
  • News
Home » Heberle Published in BBA – Biomembranes

Heberle Published in BBA – Biomembranes

Heberle Published in BBA – Biomembranes

May 2, 2021 by Kayla Benson

The Heberle Lab published their research “Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion” Biochimica et Biophysica Acta Biomembranes.

The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase.

To better understand the interleaflet interactions that influence domains, the lab compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, they investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.

Filed Under: Heberle

Chemistry

College of Arts & Sciences

552 Buehler Hall
1420 Circle Dr.
Knoxville, TN 37996-1600

Email: chemistry@utk.edu

Phone: 865-974-3141

 

The University of Tennessee, Knoxville
Knoxville, Tennessee 37996
865-974-1000

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.

ADA Privacy Safety Title IX