• Request Info
  • Visit
  • Apply
  • Give
  • Request Info
  • Visit
  • Apply
  • Give

Search

  • A-Z Index
  • Map

Chemistry

  • About
    • Student Organizations
    • Connect With Us
    • Careers With Us
    • Employee/Student Travel Request
    • Share Your Dr. Schweitzer Story
  • Undergraduate Students
    • Majors and Minors
    • First Year Students
    • Undergraduate Research
    • Summer Programs
    • Chemistry Lab Excused Absence
    • Apply
  • Graduate Students
    • Our Programs
    • Graduate Student Resources
    • Research Open House
    • Apply
  • Faculty
  • People
  • Research
    • Research Areas
    • Facilities
  • News
Home » Best

Best

Best Group Publishes ATP-Responsive Liposomes in JACS

February 23, 2022 by newframe

The research group of Michael Best in Tennessee Chemistry, led by graduate student Jinchao Lou, recently published an article describing the development of ATP-responsive liposomes in the Journal of the American Chemical Society. The nanocarriers reported in this work show strong prospects for enhancing clinical drug delivery applications.

Liposomes are highly effective nanocarriers for therapeutics due to their ability to encapsulate drugs with wide-ranging properties and enhance their circulation and delivery to cells. However, their potential could be improved by achieving control over the release of cargo to maximize drug potency and diseased-cell selectivity. While liposome-triggered release represents a vibrant field of research due to this significance, the toolbox for controlling liposome release remains limited and prior strategies face many challenges that obstruct clinical application.

The Best Group has explored a new paradigm for triggered release in which cargo escape is triggered only when liposomes encounter specific small molecule metabolites that are overly abundant in disease states. This is achieved using synthetic stimuli-responsive lipid switches designed to undergo programmed conformational changes upon the binding of small molecule targets, events that compromise membrane packing and thereby drive release.

In this work, Lou and co-workers developed liposomes that selectively respond to ATP over eleven other structurally similar phosphorylated small molecules. ATP is a critical target for metabolite-mediated drug delivery since this molecule is a universal energy source that is known to be heavily upregulated in-and-around cancer cells. This opens up the potential for selective drug delivery and release driven by overly abundant ATP associated with diseased cells.

This project also entailed a collaboration with the group of Dr. Francisco Barrera in the Tennessee Biochemistry & Cellular and Molecular Biology (BCMB) Department. Through cellular delivery and fluorescence imaging experiments, graduate student Jennifer Schuster showed that modulation of cellular ATP levels using drugs led to direct control of cellular delivery of ATP-responsive liposomes. These results demonstrate the key advancement that liposome delivery can be modulated by the cellular abundance of ATP.

A provisional patent has been filed for this ATP-responsive liposome technology. Additionally, the Best Group is currently working on advancing this platform for clinical delivery applications and developing liposomes that respond to other disease-associated small molecule metabolites.  

Filed Under: Best, Organic Chemistry

Best Group Published in Chemistry and Physics of Lipids

October 22, 2020 by Kayla Benson

The Best Group’s article titled “Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup” was published in Chemistry and Physics of Lipids.

Metabolic labeling, in which substrate analogs containing diminutive tags can infiltrate biosynthetic pathways and generate labeled products in cells, has led to dramatic advancements in the means by which complex biomolecules can be detected and biological processes can be elucidated.

Within this realm, metabolic labeling of lipid products, particularly in a manner that is headgroup-specific, brings about a number of technical challenges including the complexity of lipid metabolic pathways as well as the simplicity of biosynthetic precursors to headgroup functionality. As such, only a handful of strategies for metabolic labeling of lipids have thus far been reported. However, these approaches provide enticing examples of how strategic modifications to substrate structures, particularly by introducing clickable moieties, can enable the hijacking of lipid biosynthesis.

Furthermore, early work in this field has led to an explosion in diverse applications by which these techniques have been exploited to answer key biological questions or detect and track various lipid-containing biological entities. In this article, the group reviews these efforts and emphasize recent advancements in the development and application of lipid metabolic labeling strategies.

Filed Under: Artsci, Best, News, Organic Chemistry

Best Group’s Recent Work

October 12, 2020 by Kayla Benson

Recent work in the Best Group has culminated in the development of stimuli-responsive liposomes for drug delivery designed to release therapeutic cargo when they come into contact with diseased cells, specifically based on overexpressed enzymes and reactive oxygen species. “These smart liposomes show strong prospects for advancing drug delivery by targeting therapeutics directly to the site of the disease,” Jinchao Lou, graduate student in the Best Group, said.

Liposomes are effective nanocarriers for drug delivery due to their ability to encapsulate and deliver a wide variety of therapeutic cargo to cells. Nevertheless, liposome delivery would be improved by enhancing the ability to control the release of contents within diseased cells. Toward this end, stimuli-responsive liposomes, in which the drug carrier decomposes when it comes in contact with conditions associated with disease, are of great interest for enhancing drug potency while minimizing side effects.

While various stimuli have been explored for triggering liposome release, both enzymes and reactive oxygen species (ROS) provide excellent targets due to their key roles in biology and overabundance in diseased cells. In two separate papers, the Best Group presented a general approach to enzyme‐responsive liposomes exploiting targets that are commonly aberrant in disease, including esterases, phosphatases, and β‐galactosidases (Chem. Eur. J. 2020, 26, 8597-8607), as well as an ROS-responsive liposomal delivery platform (Bioconjugate Chem. 2020, 31, 2220-2230).

In both of the cases, responsive lipids designed to target each stimulus were designed and synthesized bearing a responsive headgroup attached via a self‐immolating linker to a non‐bilayer lipid scaffold. In this way, stimulus addition triggers chemical lipid decomposition in a manner that disrupts membrane integrity and releases contents. Release properties were fully characterized by fluorescence-based dye leakage assays, dynamic light scattering and electron microscopy, among other techniques.

Due to their recent works in this field, the Best group was also invited to write a review describing advances in the design of stimuli-responsive liposome strategies for drug delivery with an eye towards emerging trends in the field (Chem. Phys. Lipids. In Press. DOI 10.1016/j.chemphyslip.2020.104966). Smart liposomes show strong prospects for advancing drug delivery by targeting drugs directly to the site of the disease.

Filed Under: Artsci, Best, News, Organic Chemistry

Recent Posts

  • 2025 Honors Day
  • 2025 Undergraduate Awards
  • Baccile Awarded $1.8 Million Grant for Pioneering Research on Five-Carbon Metabolism
  • UT Chemistry Lab Explores Dipeptides for Carbon Dioxide Capture
  • Chemical Bonds – Fall 2024

Recent Comments

No comments to show.

College of Arts & Sciences

117 Natalie L. Haslam Music Center
1741 Volunteer Blvd.
Knoxville TN 37996-2600

Phone: 865-974-3241

Archives

  • May 2025
  • April 2025
  • March 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • December 2023
  • November 2023
  • September 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • January 2023
  • December 2022
  • November 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • September 2018
  • July 2018
  • June 2018
  • December 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • June 2016
  • May 2016
  • April 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • February 2012
  • January 2012
  • December 2011
  • October 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • January 2011
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010

Categories

  • ACGS
  • alumni
  • Analytical Chemistry
  • Artsci
  • award
  • Bailey
  • Best
  • BOV
  • Brantley
  • Calhoun
  • Campagna
  • Dadmun
  • Dai
  • Darko
  • Do
  • endowment
  • Faculty
  • faculty
  • Featured
  • fellowship
  • Graduate Student Spotlight
  • Graduate Students
  • Hazari
  • Heberle
  • Inorganic Chemistry
  • Jenkins
  • Kilbey
  • Larese
  • Long
  • Musfeldt
  • NCW
  • Nemykin
  • News
  • newsletter
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Sharma
  • Sokolov
  • Uncategorized
  • undergraduate
  • Undergraduate Student Spotlight
  • Vogiatzis
  • Xue
  • Zhao

Copyright © 2025 · University of Tennessee, Knoxville WDS Genesis Child on Genesis Framework · WordPress · Log in

Chemistry

College of Arts & Sciences

552 Buehler Hall
1420 Circle Dr.
Knoxville, TN 37996-1600

Email: chemistry@utk.edu

Phone: 865-974-3141

 

The University of Tennessee, Knoxville
Knoxville, Tennessee 37996
865-974-1000

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.

ADA Privacy Safety Title IX